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Following a novel realization of low-Reynolds-number swimming (Dreyfus et al.,
Nature, vol. 436, 2005, p. 862), in which self-assembled filaments of paramagnetic
micron-sized beads are tethered to red blood cells and then induced to swim under
crossed uniform and oscillating magnetic fields, the dynamics of magnetoelastic
filaments is studied. The filament is modelled as a slender elastica driven by a
magnetic body torque. The model is applied to experiments of Goubault et al. (Phys.
Rev. Lett., vol. 91, 2003, art. 260802) to predict the lifetimes of metastable static
filament conformations that are known to form under uniform fields. A second
experimental swimming scenario, complementary to that of Dreyfus et al. (2005), is
described: filaments are capable of swimming even if not tethered to red blood cells.
Yet, if both ends of the filament are left free and the material and magnetic parameters
are uniform along its length then application of an oscillating transverse field can
only generate homogeneous torques, and net translation is prohibited by symmetry.
It is shown that fore–aft symmetry is broken when variation of the bending stiffness
along the filament is accounted for by including elastic defects, which produces results
consistent with the swimming phenomenology.

1. Introduction
Swimming at low Reynolds numbers has been studied extensively and it has

long been appreciated that the reversibility of fluid flows in this regime prohibits
net translation of any swimmer that utilizes a time-reversible stroke sequence. The
simplest swimmer to break out of the reversibility trap is the three-link swimmer,
proposed by Purcell (1977), yet only recently (Becker, Koehler & Stone 2003) has the
direction that the swimmer would take been determined. Many ingenious swimmers
have been proposed since. For example, Najafi & Golestanian (2004) have studied a
linkage of three colinear spheres connected by a pair of rods of controllable lengths,
while Avron, Kenneth & Oaknin (2005) demonstrated that two spheres connected
by a single variable-length rod suffice, provided that volume transfer is permitted
between the spheres.

Inspired by copious biological examples such as the common bacteria E-Coli, which
swim by rotating rigid helicoidal flagella, or spermatozoa which pass bending waves
from head to tail along their flexible flagella (Brennen & Winet 1977), theoretical
attention has recently been focused upon ‘one-armed swimmers’ (Wiggins & Goldstein
1998; Camalet, Jülicher & Prost 1999; Lagomarsino, Capuani & Lowe 2003) – long
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elastic filaments, which deform under the effect of localized or distributed torques.
While hitherto modelling has needed to be confined either to micro-organisms or to
simple experiments in which biological elements are directly manipulated in optical or
magnetic traps (Wiggins et al. 1998), recent advances in micromechanical engineering
now permit the creation of independently swimming filaments, and direct control
over geometry – length and aspect ratio – material properties, torque generation, and
the shape and size of the cargo linked to the driven filament (Dreyfus et al. 2005).
It is now useful to ask fluid dynamical questions about the effects of varying these
parameters upon the pattern of the stroke and effectiveness of swimming.

We focus on one realization of such a micromanipulable object. Under an applied
uniform magnetic field superparamagnetic beads spontaneously and reversibly self-
assemble into long filaments. Goubault et al. (2003) made filaments that could survive
the removal of the magnetic field by adding polyacrylic acid during the assembly phase.
This chemical is adsorbed to the surface of the beads and a permanent polymer bridge
forms between any two beads brought into contact. The possible static conformations
of such a chain under applied uniform magnetic fields were explored, and extremely
long-lived hairpin and S-shaped structures discovered (Goubault et al. 2003). It was
shown that the bending stiffness of the filament can be inferred from the conformation
that it adopts under the static field. A similar method for permanently linking the
beads in the filament was developed in Koenig et al. (2005): the particles are coated
in streptavidin and short lengths (∼100 nm) of biotin-tipped doubled-stranded DNA
are added during assembly. Biotin binds strongly and specifically to the coating on
the particles. In Dreyfus et al. (2005) the effects of dynamically evolving magnetic
fields upon the chain shapes were studied and it was demonstrated that if a filament
is given time to align with a uniform magnetic field, and then a transverse-oscillating
field applied, the chain may begin to swim in the direction of the uniform field.
An additional condition must be met, which we shall show to proceed from the
requirement that fore–aft symmetry be broken, and can be satisfied if for instance
one end of the filament is tethered to a high-drag body such as red blood cell. Cēbers
(2005) has analysed numerically a related scenario from the same class of experiments:
the hairpin configurations are also capable of swimming under transverse-oscillating
fields (Dreyfus 2005).

Slender-body theory will be used to model the drag on a magnetically actuated
swimmer. In § 2 the equations of motion for an elastica subject to magnetic torques
are derived. As a test of this treatment of the dynamics in § 3 we present a combined
analytical and numerical analysis of the onset of instability in a filament initially
orthogonal to the external field and of the stability of a hairpin. With this analysis
we seek to determine bounds on the number of stable loops that can be formed in a
filament as a function of the filament length and field strength. In § 4 we propose a
swimming scenario in which fore–aft symmetry is broken by elastic defects naturally
present in the filament.

2. Developing equations of motion
In typical experiments the paramagnetic particles are spherical, with radii

a =500 nm, and chains consist of between thirty and a hundred particles yoked
together (Dreyfus et al. 2005). We write 2L for the length of the filament. The
particles are superparamagnetic, so when subjected to an applied field B an otherwise
isolated particle acquires a magnetic dipole moment m = (4πa3/3µ0)χ · B, where
µ0 ≡ 4π × 10−7 Hm−1 is the permeability of free space, and for complete generality
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Figure 1. Schematic of paramagnetic filament, showing the conformation (θ ) and field (φ)
angles, and tangent (s) and normal (n) vectors.

we allow the susceptibility χ to have a tensorial character. Owing to slight anisotropies
in the distribution of ferrite particles within the sphere the dipole moment upon the
particle may not always align with the applied field, which means that a single particle
may experience a magnetic torque under an external uniform field. This effect has
been harnessed in the design of magnetic tweezers (Strick et al. 1996).

Define coordinate axes, so that the motion of the filament is confined to the (x,y)-
plane, with the uniform field aligned with the x-axis, and the transverse field with the
y-axis. We suppose a sinusoidally varying transverse field, and, referring to figure 1,
decompose the total external field into components: Be ≡ (Bc, Ba ≡ B0 sin ωt, 0); the
angle between the total field and the x-axis is denoted by φ(t). In experiments, the
frequency, f = ω/2π, of the transverse field can range from 0.1 up to 50 Hz. We
will model the chain of particles as an elastica, with equivalent effective elastic and
magnetic properties.

Denote by θ the angle that the filament centreline makes with the x-axis, and use
the arclength −L < s < L to parameterize along the centreline: the function θ(s, t)
therefore encodes all information about the conformation of the elastica, and one
pair of body-fixed coordinates (typically those of one of the free ends X or of its
centre of mass XCOM) is then sufficient to describe fully the location of every material
point. Additionally, it is convenient to decompose the velocity of the centreline
into components v = vs s + vnn where we have introduced local tangent, normal and
binormal vectors:

s = (cos θ, sin θ, 0), n = (−sin θ, cos θ, 0), b = (0, 0, 1). (2.1)

2.1. A model for the internal magnetic torque

Since both components of the external field are spatially homogenous, no net force
is exerted on the swimmer. Instead internal torques are generated along the length
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of the filament, in response to which the filament bends elastically. Previous models
of one-armed swimmers have posited a simple sinusoidally varying internal torque,
and with a few exceptions, such as Lagomarsino et al. (2003), linearize for long-
wavelength deformations of the filament. Neither approximation is acceptable here,
where we shall show that the torque depends in a nonlinear way on the conformation
angle and does not inherit the simple sinusoidal time variation of the applied field,
and where the angular deflection of the filament can easily become large. However,
it is vital to our coarse-grained treatment of the elastic properties and to use of the
slender-body approximation for the drag on the filament, that the radius of curvature
(R) be much larger than the particle radius (a). Under the assumption that a/R � 1
one can account systematically for the magnetic interactions between particles at
different orders of separation along the filament.

During filament self-assembly, we expect the particles to align with their directions
of maximum susceptibility along the filament axis. To account for anisotropy of
particle magnetizability, define two principal susceptibilities: one for the tangential
direction (χ=) and one for the normal (χ⊥) so that χ = χ=ss + χ⊥(1 − ss). We also
consider the effect of dipole–dipole interactions between the particles. A single particle
in the chain having some dipole moment m ≡ ms s + mnn will create a field that is
felt by all of the other particles in the chain, and at a point distance r away in the
direction s is given by Bdip = µ0(2ms s − mnn)/4πr3. Because the dipole field decays
very rapidly, we regard each bead as feeling only the external field and that of its
nearest two neighbours and so neglect interactions between next-nearest neighbours
and other more distant particles. Moreover, if we write R for the radius of curvature
of the filament centreline, then up to some O(a2/R2) correction the dipole moments
of any triplet of nearest neighbours will be identical. The common dipole moment m
is then given implicitly by the equation

µ0m = 4
3
πa3χ ·

(
Be + µ0

2ms s − mnn
16πa3

)
, (2.2)

which can be solved for the tangential and normal components of the magnetization
moment:

ms =
4
3
πa3χ=Bs

µ0(1 − χ=/6)
, mn =

4
3
πa3χ⊥Bn

µ0(1 + χ⊥/12)
, (2.3)

in which we have also decomposed the external field Be into normal and tangential
components, respectively, Bn = Be sin(φ − θ), Bs =Be cos(φ − θ), with the orientational
angles φ and θ being indicated in figure 1. The torque resultant per unit length of
filament is then given by

τ =
1

2a
m × Be =

πa2B2
e

3µ0

(
χ= − χ⊥ + χ=χ⊥/4

(1 − χ=/6)(1 + χ⊥/12)

)
sin(2(φ − θ))b

=
2πa2B2

c

3µ0

(
χ= − χ⊥ + χ=χ⊥/4

(1 − χ=/6)(1 + χ⊥/12)

)
S(θ, t; b0)b, (2.4)

where we have trammelled all of the time and conformation dependence of the torque
into a single dimensionless function:

S(θ, t; b0) ≡ b0 sin ωt cos 2θ − 1
2

(
1 − b2

0 sin2 ωt
)
sin 2θ. (2.5)

Here b0 ≡ B0/Bc is the dimensionless amplitude of the transverse field. Notice that
both types of anisotropy, that inherent in the particles and that due to dipole–dipole
interactions (which give the filament a larger susceptibility in the chain-tangential
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direction than in the chain-normal direction), give rise to magnetic torques with the
same angular dependence. We assume when making quantitative comparisons with
experiment that dipole–dipole interactions are a much larger source of anisotropy,
and so take χ= = χ⊥ ≡ χ .

We can also estimate the error associated with the neglect of the next-nearest
neighbour interactions. Suppose that the filament were straight so that (neglecting
end effects) all the dipoles along its length were parallel. Then, a simple extension
of the above derivation gives a similar expression for the components of the dipole
moment, with χ replaced wherever it appears in the denominator by ζ (3)χ , where the
Riemann-zeta prefactor is ζ (3) ≈ 1.20 (Zhang & Widom 1995; Martin & Andersen
1996). The sensitivity to conformation is similarly demonstrably small: with no
impairment to the order of accuracy of our calculation, which is dominated by the
errors in the hydrodynamic model, we may neglect such corrections.

2.2. The elastica with magnetic torques

For the experiments of Dreyfus et al. (2005) we may calculate a Reynolds number
for the transverse motion of the filament Re = ωa2/ν ≈ 10−5. The extreme smallness
of this number implies that the inertia of the surrounding fluid may be neglected, and
the only reaction force that it can exert against the motion of the filament is a Stokes
drag. We can approximate for this using slender-body theory (Batchelor 1970). While
the beads are not neutrally buoyant, their density does not greatly exceed that of the
surrounding fluid, so that the inertia of the filament is similarly negligible.

The equations of motion for the filament follow from a balance between
elastomagnetic and viscous stresses on an infinitesimal element of chain. We write Λ,
N for the s =constant cross-section-integrated tangential (tension) and normal stress
resultants, N ≡ Λs + Nn, and vs and vn for the corresponding local velocities of the
filament, so that a force balance gives

∂

∂s
(Nn + Λs) = ζ (vs s + αvnn). (2.6)

Here ζ is the drag coefficient per unit length on the chain for motion parallel to
the centreline, and α a drag anisotropy factor, which is equal to the ratio of drag
coefficients for motion perpendicular to and parallel to the centreline of the body. For
a chain far from any solid boundaries slender-body theory predicts ζ = 2πη/ log(2L/a)
(where η is the viscosity of the fluid) and α = 2 up to leading order in log(2L/a)
(Batchelor 1970). For the present experiments we estimate log(2L/a) ≈ 3, and the
error due to neglect of higher-order corrections to the drag constitutes the most severe
defect of the model. In fact the filaments used in the experiments of Dreyfus et al.
(2005) are denser than the surrounding fluid, and therefore sediment to the bottom
of the capillary tube. The proximity of the wall leads to enormous enhancement of
the wall drag, and this must be taken account of in order to achieve quantitative
agreement with the experimental data.

The moment balance on an element of the elastica gives

τ +
∂ M
∂s

+ s × N = 0, (2.7)

which relates the torque per unit length τ which was derived in § 2.1 to the cross-
section integrated bending moment M . The last term on the left-hand side represents
a couple associated with the stresses acting across the ends of the element. We posit a
simple constitutive relation M = Kbκb, where κ ≡ ∂θ/∂s is the curvature: The filament
is assumed to be inextensible, with a uniform bending stiffness Kb. We expect this
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coarse-graining of elastic properties to be acceptable provided that adjacent particles
are not brought into contact, that is, the radius of curvature κ−1 is always much larger
than a. Such a model was found to give good agreement on the static chain shapes,
and it was shown that the filament bending stiffness Kb could be simply related to the
stiffness (Klink

b ) of the polymer bridges linking particles via a relation Kb = 2aKlink
b /�,

where � is the linker length (Goubault et al. 2003).
Next, recall the Serret–Frenet formulae

∂s
∂s

= κn,
∂n
∂s

= κb × n = −κs, (2.8)

using which, the stress balance relation (2.6) can be separated into tangential and
normal components:

ζvs =
∂Λ

∂s
− κN, αζvn =

∂N

∂s
+ κΛ. (2.9a, b)

The torque balance relation (2.7) is simply

N = −Γ S − Kb

∂2θ

∂s2
with Γ ≡ 2πa2B2

c

3µ0

χ= − χ⊥ + χ=χ⊥/4

(1 − χ=/6)(1 + χ⊥/12)
. (2.10)

We use this result to substitute for N in the above. Now s · s = 1 so that s · ds/dt =0,
and consequently

ds
dt

= (s · ∇)v =
dv

ds
=

(
∂vs

∂s
− κvn

)
s +

(
∂vn

∂s
+ κvs

)
n. (2.11)

Hence the inextensibility condition becomes ∂vs/∂s = κvn or in terms of the system
variables θ and Λ:

α
∂2Λ

∂s2
= κ2Λ −

(
(α + 1)κ

∂

∂s
+ α

∂κ

∂s

) (
Kb

∂2θ

∂s2
+ Γ S

)
. (2.12)

Additionally the first Serret–Frenet formula can be reworked as

ds
dt

=
dθ

dt
n =

(
∂θ

∂t
+

∂θ

∂s

ds

dt

)
n, (2.13)

with the last summand vanishing by inextensibility. Substituting this back into the
kinematical statement (2.11), we obtain an equation of motion for θ(s, t) and Λ(s, t)
in the form

αζ
∂θ

∂t
=

∂

∂s
(κΛ) + ακ

∂Λ

∂s
+

(
ακ2 − ∂2

∂s2

)(
Kb

∂2θ

∂s2
+ Γ S

)
. (2.14)

A similar equation has been derived by Cēbers & Javaitis (2004) under the hypothesis
of isotropic viscous drag.

We non-dimensionalize the equations of motion (2.14) and of inextensibility
(2.12) according to the following prescription. Define dimensionless system variables,
t = t̃/ω, s = Ls̃, and non-dimensionalize all of the stress resultants by a characteristic
hoop stress, Λ = KbΛ̃/L2, in terms of which the equations of motion become (we
immediately discard the tildes on dimensionless quantities)

α
∂2Λ

∂s2
=

(
∂θ

∂s

)2

Λ −
(

(α + 1)
∂θ

∂s

∂

∂s
+ α

∂2θ

∂s2

) (
∂2θ

∂s2
+ MnS(θ, t; b0)

)
, (2.15a)
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Ω
∂θ

∂t
=

∂2θ

∂s2
Λ + (α + 1)

∂θ

∂s

∂Λ

∂s
+

(
α

(
∂θ

∂s

)2

− ∂2

∂s2

)(
∂2θ

∂s2
+ MnS(θ, t; b0)

)
. (2.15b)

The relative strength of magnetic to elastic effects (the ‘floppiness’ of the filament) is
encoded into a single dimensionless group, which we refer to as the magnetoelastic
number

Mn ≡ 2π(aBcL)2

3µ0Kb

χ= − χ⊥ + χ=χ⊥/4

(1 − χ=/6)(1 + χ⊥/12)
. (2.16)

The other dimensionless numbers required for a complete description of the physics
are the ratio of viscous-relaxation to magnetic time scales Ω = αωζL4/Kb, the ratio
of drag coefficients α, and – through the dimensionless torque S(θ, t; b0) – the ratio
of transverse to uniform fields b0. Typical experiments have 14a < L < 40a, b0 ≈ 1,
1 < Mn < 10 and 1/10 < Ω < 100.

Equations (2.15) must be supplemented by a total of six boundary conditions. If
both ends of the filament are free, these take the form of vanishing bending moment,
and normal and tensile stress conditions:

∂θ

∂s
= 0,

∂2θ

∂s2
+ MnS(θ, t) = 0, Λ = 0, (2.17)

at s = ± 1. We see immediately that if the filament is started from a symmetric initial
configuration (θ(s, 0) = θ(−s, 0)), such as being aligned with the uniform field at t = 0,
then this symmetry will be preserved by the motion. This means, in particular, that
the filament cannot select a direction to swim in: nor, since the flow is inertialess
and instantaneous, can it be expected that small asymmetries (such as infinitesimal
perturbations to the initial filament shape due to thermal motions) will be amplified,
and allow this symmetry to be broken, as has been shown the case in instances of
lift-based propulsion (Vandenberghe, Zhang & Childress 2004).

Throughout this work we solve the pair of equations (2.15), subject to various
combinations of boundary conditions, using a numerical scheme in which spatial
derivatives are approximated by second-order finite differences (with the number of
evaluation points Np covering a range 60 < Np < 201). The stiffness of the equations
means that an implicit scheme is required for the time evolution. We use a variable-
order, variable-step-length scheme based on Gear’s method (the MATLAB routine
ode15s).

3. Linear dynamics of static shapes under a uniform steady magnetic field
Notice that the torque S(θ, t) vanishes when θ = φ or θ =φ + π/2, so that the

filament is either locally aligned or orthogonal to the direction of the applied field.
In the absence of an oscillating transverse field (φ ≡ 0) there are, accordingly, two
possible straight equilibrium shapes: θ ≡ 0 and θ ≡ π/2. Only the first of these
is stable; a filament slightly perturbed from the second configuration will either
rearrange into the first or into one of a class of numerous metastable and long-lived
hairpin shapes. We explore this evolution numerically, mimicking the methodology
of Goubault et al. (2003), in which filaments were allowed to align with a uniform
field, and then a much stronger field, oriented at 90◦ to the first is switched on, and
the folded filaments imaged. Images of a filament evolving to a simple hairpin are
given as the first seven panes of figure 2, and should be compared with numerical
simulations of the same event shown in figure 3(a). If, as in this case, the filament is
too short, or the field too weak, then the hairpin destabilizes, and the filament unfolds
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Figure 2. Evolution of a short filament to a hairpin, followed by unfolding and realignment.
The filament is composed of a 13 µm length of 750 nm particles with measured bending stiffness
4.9 × 10−24 Jm, and field strength Bc = 1.0mT corresponding to a magnetoelastic number of
Mn = 0.12.
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Figure 3. Prototypical evolution of a filament initially perpendicular to the applied magnetic
field at moderate magnetoelastic number. (a) (0 < t < 0.5): odd-parity instability drives
the filament away from the straightened state, and it evolves to metastable hairpin.
(b) (4.5 < t < 5.0) the hairpin destabilizes; the filament relaxes to alignment with magnetic
field. Here, Mn = 6.0 and the number of points in the spatial discretization is Np = 201, with

an initial perturbation of size Bβ = 10−3.
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to come into complete alignment with the applied field, as shown in the remaining
panes of figure 2 which should be compared with the numerical results presented in
figure 3(b). The stability of the hairpin and S-shaped conformations is discussed in
§ 3.2.

The complete classification of the metastable shapes is an unsolved matter. Here
we take a first step toward providing such a classification by clarifying the dynamics
of their formation – the growth of instability of the filament under a perpendicular
applied field – and by presenting some numerical and asymptotic results on the
lifetime of the simplest of the hairpin conformations. We argue that such stability
considerations limit the number of folds that can be resolved in the experiments of
Goubault et al. (2003).

3.1. Linear dynamics of a filament perpendicular to the applied field

In the absence of a forcing time scale, we scale time by the elastoviscous time scale
T ≡ αζL4/Kb. For small deformations of the filament away from orthogonality to
the field: θ ≡ Θ + π/2, we may linearize the system (2.15). It is seen that the tension
vanishes along the length of the filament, and that (2.15b) and (2.17) reduce to

∂Θ

∂t
= −∂4Θ

∂s4
− Mn

∂2Θ

∂s2
,

∂Θ

∂s

∣∣∣∣s=±1 =
∂2Θ

∂s2
+ MnΘ|s=±1 = 0. (3.1)

We solve this equation completely by seeking eigenfunctions of the associated linear
operator: (

L1 ≡ ∂4

∂s4
+ Mn

∂2

∂s2

)
Θ̂ = −βΘ̂. (3.2)

Such eigenfunctions will evolve in time as Θ(s, t) = Θ̂(s; β)eβt . Eigenfunctions with
multiple turning points, which we expect to be the linear precursors of the many-folded
conformations observed by Goubault et al. (2003), have growth rates 0 <β<M2

n/4,
and because of the symmetry of the operator L1 can be divided into even- and
odd-parity solutions with respective forms

Θ̂e(s; β) = Aβ cos kβs + aβ cos Kβs, Θ̂o(s; β) = Bβ sin kβs + bβ sin Kβs, (3.3)

where

k2
β = 1

2

(
Mn −

√
M2

n − 4β
)
, K2

β = 1
2

(
Mn +

√
M2

n − 4β
)
. (3.4)

In order for the boundary conditions to be simultaneously realizable by some choice
of the coefficients aβ and Aβ or bβ and Bβ then – according to the parity of the
solution sought – it is necessary that β satisfy one of the equations

even: k3
β tan kβ = K3

β tan Kβ or odd: k3
β cot kβ = K3

β cotKβ. (3.5)

As Mn is increased ‘higher-order’ unstable modes become available by an exchange
of stabilities, so that an eigenmode with n arches exists if and only if

Mn � n2π2/4. (3.6)

(The cases n= 1 and n= 2 require special treatment; see § 3.2 below). An equivalent
presentation of this criterion is in the form of a condition upon the length of the
filament L > nLm, for which we define a magnetoelastic persistence length:

L2
m ≡ 3πµ0Kb

8a2B2
c

(1 − χ=/6)(1 + χ⊥/12)

χ= −χ⊥ + χ=χ⊥/4
. (3.7)
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Figure 4. Test of linear dynamics as a predictor for the number of arches formed, n, as a
function of the magnetoelastic number, Mn. The sequence of applied fields is described in
the text and filaments of lengths ranging from 10 µm up to 150 µm are constructed from
from particles of diameter 2a = 750 nm (Ademtech) linked by polyacrylic acid, with bending
stiffness Kb = (6.3 ± 2.3) × 10−24 Jm, and susceptibility χ =1.62. Different coloured data-sets

correspond to different field strengths: Bc =
√

B2
t + B2

o = 6.21mT (magenta) Bc =8.97 mT
(blue); Bc = 12.44mT (red) and Bc = 17.80mT (green). The error bars reflect uncertainty in
bending stiffness. The solid curve represents the lower bound derived in § 3.1 based on linear
dynamics, and the dashed curve the criterion (Mn/n2 > 75) postulated in § 3.2 on stability
grounds.

The same result has also been derived by Cēbers (2005). Arguing that each multiply
folded metastable configuration must form from a linearly unstable mode with the
same or a greater number of folds, we posit that the criterion (3.6) will set the
minimum length of a filament for it to form a metastable shape of n-folds. The
results of a simple experimental assay to test this hypothesis are shown in figure 4. In
the experiments (which follow the methodology of Goubault et al. 2003), filaments
are first allowed to align with a weak magnetic field of strength Bt = 1.4 mT, and
then a much stronger orthogonal Bo field is quickly switched on. This procedure
differs slightly from the scenario described in our linear stability analysis, by the
presence of a small residual magnetic field component parallel to the filament. In
the experimental assays, a large number of filaments are initially aligned with the
weak field, a transverse field is applied, and the steady configurations attained by the
filaments are then imaged. The number of folds in each of the steady configurations
is then recorded along with the measured length of the filament, and thence the
magnetoelastic number, and they are both plotted in figure 4. Data sets of different
colours come from different assays, with the corresponding field strengths noted in
the caption to the figure.

Evidently, the linear instability criterion (3.6) provides only a very slack lower
bound upon Mn for arches to be observed. The mode structure seen at early times
cannot alone determine the final configuration of the system. We indicate in § 3.2
that a much stronger lower bound may come from the requirement that the static
conformation be linearly stable. Two features of figure 2 are also in disagreement with
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linear theory. Evolution toward the hairpin shape is seen at a magnetoelastic number
Mn =0.1, which is much less than the critical number Mn = π2/4 for buckling given
by (3.6). In fact the n= 1 mode must be treated separately from higher-order modes,
as will be shown in § 3.2. The simulated hairpin also develops an inflection point
at its midpoint as it approaches a fully straightened state. No such inflection point
is seen in the experimental time images. The difference cannot be attributed to the
different parameters in the two plots; a near-straightened filament adopts the shape
of the slowest decaying linear mode, which can be shown, by an analysis similar
to that undertaken above, to always have an inflection point. It is likely that the
discrepancy in this case originates from the relative weakness of the magnetic field,
and the consequently greater role of heterogeneities in the filament bending stiffness,
whose influence is discussed in § 4.

3.2. Formation and stability of a simple hairpin

At moderate Mn exceeding the critical values identified in § 3.1, the static hairpin
is vulnerable to invasion by unstable modes, as shown in the numerical simulations
presented in figure 3(b). Ensuring that the conformation is stable imposes much stiffer
bounds upon Mn than the existence of buckling modes with the required number of
arches. We will examine this for the case of a simple hairpin.

We begin by noting that the criterion for the existence of linear modes with n

arches derived in § 3.1 should not be applied to n= 1, 2, since it was arrived at by
excluding modes with growth rates β >M2

n/4, and address here the existence of more
rapidly growing modes. The even- and odd-parity solutions have respective forms

Θ̂e(s; β) = Cβ coshps cos qs + cβ sinhps sin qs, (3.8a)

Θ̂o(s; β) = Dβ coshps sin qs + dβ sinhps cos qs, (3.8b)

where the exponents p, q are related to the coefficients of the differential equation by

(p + iq)2 = 1
2

(
−Mn + i

√
4β − M2

n

)
. (3.9)

In order for the boundary conditions to be simultaneously realizable by some choice
of Cβ and cβ , or Dβ and dβ , we must have respectively

even: q(Mn − p2 − q2) sinh 2p = −p(Mn + p2 + q2) sin 2q, (3.10a)

odd: q(Mn − p2 − q2) sinh 2p = p(Mn + p2 + q2) sin 2q. (3.10b)

One can show with a little algebra that the first equation has a single root provided
that sin

√
2Mn/

√
2Mn � 1/3, i.e. Mn � 2.597, while the second equation also has a

single root, but that this exists for all positive Mn. Even eigenmodes have two arches,
and odd eigenmodes a single arch; so it is tempting to identify these linear modes
as the progenitors of the doubly and singly folded hairpins that were observed by
Goubault et al. (2003).

It is useful in this vein to ask which of the eigenmodes is more unstable. Numerical
solution of the pair of equations (3.10) shows that while the even mode is initially the
most unstable, it is overtaken by the odd mode if the magnetoelastic number Mn is
increased to a value Mc

n = 3.290. At higher values of Mn the two modes alternate as
most unstable: see figure 5 in which the linear growth rate β is plotted as a function
of Mn. The shapes of the even and odd perturbations are shown in figures 5(b) and
5(c). In the limit Mn 	 1 one can show that the odd and even modes have respective
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Figure 5. (a) Scaled growth rates of maximally unstable even- (solid line) and odd-parity
(dotted line) modes. Corresponding mode shapes are shown (exaggerated) as (b, even) and
(c, odd).

asymptotic growth rates

β = M2
n

(
1 ∓ 4√

3

sin
√

3Mn

sinh
√

Mn

)
(3.11)

so that to leading order, whether the most unstable mode has odd or even parity is
controlled simply by the sign of sin

√
3Mn. The exponential growth of the denominator

in (3.11) makes this analytical criterion extremely accurate: its prediction that the
first transition occurs at Mn = π2/3 is indistinguishable to three decimal places from
the numerically obtained value.

We now allow the two modes to evolve numerically using the fully nonlinear
equations of motion and inextensibility (2.15). For sufficiently strong magnetic fields
the odd mode evolves to a hairpin. We can calculate the final equilibrium shape
exactly: the solution of the equilibrium equations compatible with the boundary
conditions has

Λ ≡ 0, N ≡ 0 or
∂2θ

∂s2
=

Mn

2
sin 2θ (3.12)

(Goubault et al. 2003). If we introduce a scaled arclength s̄ = M1/2
n s, and measure

angles with respect to the field-orthogonal direction (θ = π/2+Θ) then (3.12) reduces
to the equation of a simple pendulum:

∂2 (2Θ)

∂s̄2
= −sin 2Θ subject to

∂Θ

∂s̄

∣∣∣∣
s̄=±M

1/2
n

= 0. (3.13)

Provided that Mn > π2/4, (3.13) can be solved exactly in terms of Jacobi amplitudes:
with angle and arclength variables related by an expression∫ Θ

0

dΘ ′
√

cos 2Θ ′ − cos 2Θ0

= − s̄√
2
, (3.14)

where Θ0 = Θ(s̄ = −
√

Mn) is given implicitly in terms of the magnetoelastic number
by K(sin Θ0) =

√
Mn so that Θ0 ∼ π/2 − 4

√
2e−

√
Mn as Mn → ∞. Figure 6 shows

the collapse of the filament shapes to a single universal form (corresponding to the
solution of (3.13) with Θ0 = π/2) at large magnetoelastic numbers.

Perturbing around this analytical expression for the hairpin shape we can estimate
the lifetime of the hairpin by a second stability analysis. Introducing perturbation
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Figure 6. Universal form of the hairpin configurations. The x- and y-axes are scaled by M
1/2
n .

Solid lines represent evolved solutions for Mn=3.0, 10.1, 19.3, 36.7; the dotted line is the
Mn → ∞ asymptote: log(secΘ + tanΘ) = − s̄.

quantities Λ ≡ MnΛ
′, θ = π/2 + Θ + θ ′, and scaling time t̄ = M2

n t and arclength
s̄ = M1/2

n s, we arrive at the linear instability equations

α
∂2Λ′

∂s̄2
=

Λ′

2
(cos 2Θ − cos 2Θ0)

+

(
(α + 1)√

2
(cos 2Θ − cos 2Θ0)

1/2 ∂

∂s̄
+

α

2
sin 2Θ

)(
∂2θ ′

∂s̄2
+ θ ′ cos 2Θ

)
,

(3.15a)

∂θ ′

∂t̄
= −Λ′

2
sin 2Θ − (α + 1)√

2
(cos 2Θ − cos 2Θ0)

1/2 ∂Λ

∂s̄

+

(
α

2
(cos 2Θ − cos 2Θ0) − ∂2

∂s̄2

)(
∂2θ ′

∂s̄2
+ θ ′ cos 2Θ

)
, (3.15b)

subject to boundary conditions(
∂2θ ′

∂s̄2
+ θ ′ cos 2Θ

)∣∣∣∣
s̄=±

√
Mn

=
∂θ ′

∂s̄

∣∣∣∣
s̄=±

√
Mn

= Λ′|s̄=±
√

Mn
= 0. (3.16)

The filament is locally absolutely stable: localized disturbances are quickly annihilated
by the bending stiffness, represented by the hyper-diffusive term. Since time does
not appear explicitly in (3.15) it suffices to seek global modes: Λ′(s̄, t̄) = Λ̃(s̄)eβ̄ t̄ ,
θ ′(s̄, t̄) = θ̃(s̄)eβ̄ t̄ and solve numerically the corresponding linear generalized eigenvalue
problem. The evolution with magnetoelastic number of the eigenvalues corresponding
to the most unstable modes of the hairpin is shown in figure 7(a). In figure 7(b),
the mode shapes of the unstable and slowest decaying stable modes are plotted. The
single linearly unstable mode approaches, in the limit Mn → ∞, neutral translation in
s̄ of the basic profile: θ̃ ∝ ∂Θ/∂s̄. This perturbation function θ̃ (s) is not admissible
at any finite Mn since it disagrees by some O(exp

√
Mn) amount with the boundary

conditions (3.16). The scale of the correction that must be made to ensure compatibility
with boundary conditions sets the growth rate of the most unstable mode, and so
accounting for our rescaling of the time variable, we expect the filament to have an
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Figure 7. (a) Variation in growth rates of linear modes with Mn, for α = 2.0. Dotted line
indicates marginal stability, and the dashed curve is the slowest relaxing mode of a straight
filament of length L in near alignment with the magnetic field. (b) Linear mode shapes for
Mn = 30 α = 2.0, the solid curve is the equilibrium shape, the dashed curve is the maximum
unstable mode, and the dotted curve the slowest decaying stable mode.

O(M−2
n exp

√
Mn) lifetime (measured in units of the elastoviscous relaxation time) in

the limit of large magnetoelastic numbers. At moderate magnetoelastic numbers this
lifetime may be extremely short: for instance at Mn = 10, the exponential growth rate
of this unstable mode is numerically determined to be β = 0.018, giving it a lifetime
of T = 1/M2

nβ ≈ 0.5. This is comparable to the time required for hairpin formation,
and so we expect no hairpin shapes to be observed at or below this value of the
magnetoelastic number.

The other modes of the filament are all stable down to arbitrarily small
magnetoelastic numbers, and have lifetimes inversely proportional to Mn at large Mn.
The rate at which each of these modes decays is controlled by the resistance arising
from bending stress in the central arch of the hairpin. This point is made evident when
the decay is contrasted with the much more rapid relaxation to complete alignment
with a magnetic field of a filament of length L, representing one of the severed
arms of the hairpin, which can be deduced from a linear stability analysis of the
θ = 0 equilibrium state and is shown as the dashed curve in figure 7(b). In this case,
deformations are eliminated at a rate asymptotically equal to β ∼ π2Mn (in units of
the elastoviscous time).

We can use these results to revise the lower bound upon Mn for the formation
of multiply folded structures that was derived in § 3.1. Thus, even though the linear
precursor to a simple hairpin exists down to Mn = π2/4, such hairpins are only
asymptotically stable in the limit of large magnetoelastic numbers. For a filament
configuration to survive for the duration of the experiment, it is necessary that
the exponential growth time 1/β greatly exceed the duration of the experiment.
For the shortest hairpin observed in the series of experiments depicted in figure 4,
L =3.8 µm, so that for a hairpin to survive an experiment of duration Te, we must
have αζL4/βKb > Te. The filament-perpendicular drag coefficient (which is greatly
augmented by the proximity to the floor of the capillary tube) can be measured
from assays of short filaments undergoing near rigid-body rotation under oscillatory
magnetic fields (Dreyfus 2005); αζ ≈ 1.3 × 10−2 Pa s−1, and using the experimental
values of Kb, χ and a (given in the caption to figure 4) we see that if Te = 10 min
we must have β < 4.1 × 10−4, which is obtained for Mn > 75 ± 10 (the precise



On the dynamics of magnetically driven elastic filaments 181

determination of this threshold is difficult at such small values of β), or to a field
strength Bc =13 mT. The series of assays recorded in figure 4 includes a hairpin
of this length obtained at a field strength Bc = 17.8 mT, indicating that this is
a physically reasonable condition. Moreover because our previous arguments give
β = O(M2

nexp(−
√

Mn)), the condition for survival of a hairpin over the duration of an
experiment may be expressed as a critical condition upon Mn (i.e. upon the product
BcL) with only weak (logarithmic) direct dependence upon L through the ratio of
time scales Te/(αζL4/Kb). Extending the stability analysis given above to multiply
folded filaments is difficult, since there is no analytical form for the base state, and
direct simulation of the instability is hindered by the need to resolve extremely small
radii of curvature at the folds. However, for a filament of n folds it is likely that
the survival condition may be expressible as a critical bound upon an intensive
magnetoelastic number mn ≡ Mn/n2 defined using the length of filament between
arches � =L/n instead of the full length. Using our survival criterion for the hairpin,
we use the postulated condition mn > 75 to compute a much tighter lower bound for
the appearance of multiply folded filaments, shown as the dashed curve in figure 4.

Hairpins have also been shown to be stable under finite time-oscillatory transverse
magnetic fields (Dreyfus 2005). Previously this anomalous stability has been attributed
to magnetic heterogeneity (Cēbers 2005). However, after the magnetic field has been
switched off the relaxed filaments often retain residual curvature typically of order
0.1 µm−1 for the PAA-bonded chains assayed in figure 4 (Dreyfus 2005), indicating
that the severe strains associated with hairpin formation may induce irreversible
(plastic) deformations of the polymer bridges between particles. This observation is
also consistent with data presented in figure 3 of Goubault et al. (2003), in which
hairpins of non-zero curvature are predicted by extrapolating the field strength to
zero. Plastic deformation in the hairpin arch suffices to completely stabilize a filament,
by eliminating the single unstable eigenmode, which we have seen corresponds, at
large enough Mn, to translation of the filament along its length, and it is tempting to
speculate that attaining curvatures large enough to induce plastic deformation may be
a constraint for the realization of hairpin structures. However, there is no signature of
this behaviour in figure 4, for in a simple model in which plastic deformation occurs
only when the curvature at the midpoint of the arch exceeds some critical value
κc (say), our condition for deformation may equivalently be written in terms of the
transformed coordinates introduced above as ∂Θ/∂s̄(s = 0) ≈ 1/2 > κcL/M1/2

n , which,
apart from logarithmic corrections, gives us a bound that features the field strength
only, and does not depend upon the length of the filament. Thus two filaments of
different lengths should have equal capacity to form hairpins under the same magnetic
field, contrary to the trend shown in figure 4.

4. Defect-provoked swimming
It is observed experimentally that even if both ends of a magnetic filament are

left free, it may be capable of swimming under the combination of fields (uniform in
the direction of motion with a sinusoidally varying orthogonal component) identified
above. For the fore–aft symmetry to be broken, one of our assumptions about
the homogeneity of the magnetic and elastic properties must be violated. Since the
number of polymer linkages between the particles in the filament is difficult to control
experimentally, we expect some variation in bending stiffness along the length of the
filament. In fact, close examination of time-series images of swimming filaments shows
that, without exception, each has a visible defect: at least one obviously malformed
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Figure 8. Images of a swimming filament. Experimental parameters: length 2L =20 µm, field
strengths Bc = 50 mT and B0 = 70 mT, ω =100π s−1, swimming speed 〈vx〉 ≈ 2 µms−1 to the
right. The arrow indicates location of the apparent defect.

θ (s*
+)

θ (s*
–)

Bx

Figure 9. Schematic of a filament with a single defect at a site s = s∗. We denote by s = s∗
−

and s = s∗
+ material points just to the left and to the right of the defect.

contact between some pair of particles. A typical series of images illustrating such
a defect is given as figure 8. While it is more likely that symmetry is broken by
a variation in bending stiffness along the filament, here we investigate how much
useful physics can be extracted from a simple mode of elastic symmetry breaking:
the inclusion of a single defect.

We model the defect by imagining that the polymer bridge between one pair of
particles in the filament, though able to maintain their adjacency, has no inherent
bending stiffness and cannot transmit torques. In our continuum model for the
filament this means permitting a step discontinuity in the angle θ at some value of the
arclength parameter s = s∗; see figure 9. No torque can be exerted upon this linker,
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Figure 10. Swimming velocity as a function of defect location (s∗), showing variation with
(a) magnetoelastic number Mn, at constant Ω = 2.0 and (b) frequency at constant Mn = 1.0. In
(a) arrow denotes increasing Mn, for values Mn = 1.0, 5.0, 10.0. In (b) the solid line represents
Ω = 2.0, the dashed line Ω = 20.0, and the dotted line Ω = 80.0. In (b) we plot the scaled
velocity Ω〈vx〉 (distance travelled per unit time, rather than per stroke) to eliminate spurious
frequency dependence. All data sets are obtained with b0 = 0.5, α = 2.0 and Np =81.

so that we must have vanishing bending moment as the defect is approached from
either side: ∂θ/∂s|s = s∗

±
= 0.

Additionally, balances of tangential and normal forces acting on the linker give
respective conditions

[Λ cos θ − N sin θ]
s=s∗

+

s=s∗
−

= [Λ sin θ + N cos θ]
s=s∗

+

s=s∗
−

= 0. (4.1)

Assuming that the length of the linker (and thus the relative motion of the two ends
of the filament s = s∗

±) can be neglected, we may equate the velocities of the two ends
and arrive at an additional pair of boundary conditions:

[vs cos θ − vn sin θ]
s=s∗

+

s=s∗
−

= [vs sin θ + vn cos θ]
s=s∗

+

s=s∗
−

= 0. (4.2)

Applying these six conditions on the angle and tension variables at the defect we
can solve the governing PDEs numerically.

4.1. Kinematics of swimming: moderate frequencies

Having broken free from fore–aft symmetry, the filament is now able to swim, but
just as with Purcell’s three-link swimmer, there is no a priori way of determining in
which direction it swims. We let s∗ range from −1 to 1, give the filament enough
time to forget its starting configuration and attain a periodic swimming state, and
determine its period-averaged swimming velocity. In figure 10 we demonstrate the
effect upon the swimming velocity of varying the location of the defect s∗, the
magnetoelastic number Mn, and the frequency of the transverse field Ω . For small
to moderate values of the transverse field strength b0, the filament always swims
towards the defect (i.e. to the left if s∗< 0 and to the right if s∗ > 0). In order to
explain the phenomenology of the swimming stroke, we illustrate with figures 11(a),
and 12(a, b) typical conformations adopted by the filament, while for comparison
figure 11(b) shows the affect of applying the same configuration of fields to a filament
with no elastic defects.

The set of conformations for a high-frequency swimmer (figure 12a, b) resemble a
variant of the three-link swimmer proposed by Purcell (1977), and analysed completely
by Becker et al. (2003). The same ideas of passive and active elements developed in
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Figure 11. (a) Kinematics of the swimming stroke at low (Mn = 1.0, Ω = 2.0) frequency. The
defect is located at s∗ = 0.32. (b) Stroke of filament at Ω = 80 without defect for contrast with
figure 12(a, b). As a visual aid, the cycle is split into two halves: defect point moving in the
negative y-direction (black curves), and defect point moving in the positive y-direction (grey
curves) Both simulations are performed with b0 = 0.5 and Np = 81.
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Figure 12. (a) Thrust, (b) recovery. Mn =1.0, Ω = 80, b0 = 0.5 and Np =81. The transverse
field b0 sin t decreases from b0 to −b0 over the half-cycle. The dotted line represents the initial
shape, the solid line the final shape, and grey lines intermediate shapes. The remaining half of
the cycle can be obtained by mirror reflection in the x-axis. (c) x-displacement of the defect
during the stroke sequence.

that paper can be applied to this swimmer, albeit with caution since both extremities
are active at the same time, and torques are generated along the filament rather
than exclusively at joints. To describe the stroke pattern of the filament at high
frequencies, we split the stroke into two parts: ‘thrust’ and ‘recovery’. Consider the
force generated at the rightward end of the longer arm of the filament – in the ‘thrust’
phase the angle made by the arm at the defect is decreasing, and net force acts in the
positive x-direction (analogous to the motion achieved by Purcell’s hypothetical low-
Reynolds-number scallop by shutting its shell). During ‘recovery’ the angle increases,
and net force acts in the negative x-direction (scallop opening). The normal force at
s∗ is in general non-zero; it must be equated to the total viscous drag on the short
(‘rudder’) arm of the filament, which suffices to break the fore–aft symmetry of the
driving arm.

During the thrust phase the short arm relaxes out any curvature developed in
the previous recovery stroke, and moves in the y-direction without any change of
orientation. The total magnetic torque on the rudder, which is directed anticlockwise
in figure 12(a), must be balanced by the normal stress moment (s-integrated normal
stress) since there is no torque resultant at either end of the rudder. During ‘recovery’
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(with the torque now directed clockwise) the rudder starts to rotate and to flex in
the opposite sense. This means that the total torque, and by implication the normal
force at the left-hand end, is reduced compared to the thrust stroke. Note that there
is little translation of the centre of the rudder in figure 12(b) and that the driving arm
deforms in a much more fore–aft-symmetric fashion. Displacement in the negative
x-direction is less in recovery than that in the positive direction during thrust.

To make a quantitative study of the effect of varying the frequency, site of the defect,
or magnetoelastic number upon the swimming speed of the filament, we examine the
two analytically tractable limits in which the period of the transverse field is much
longer or shorter than the elastoviscous time scale on which the filament is able to
eliminate bending.

In the high-frequency limit (Ω 	 1, Ω 	 Mn) it can be shown that deformation
of the filament under the applied torques is confined to regions of length O(Ω−1/4)
near the free ends; outside these bending boundary layers the filament remains aligned
with the steady component of the applied magnetic field. The deformation is not severe
and the evolution of the angle variable θ is governed by the hyper-diffusive equation
studied by Wiggins & Goldstein (1998), with the magnetic torque not participating
directly but featuring in the boundary conditions at s = s∗ and s = 1. At large Ω

defect-provoked swimming is only possible if s∗ lies within one of the two bending
boundary layers, the signature of which can be seen in the shift in the peak swimming
speed toward s∗ = 1 in figure 10(b).

4.2. Slowly varying magnetic field Ω � 1

For a slowly varying transverse field, the filament tracks the local field direction almost
as a rigid body. Kinematic reversibility makes this mode of swimming ineffective:
whatever thrust is generated on one stroke is entirely repaid on the counter-stroke
and any tendency to swim must come from the small flexure that develops at finite
Ω . We pursue an expansion in powers of Ω of each of the system variables around
the rigidly pivoting solution:

θ(s, t) = tan−1(b0 sin t)︸ ︷︷ ︸
θ0(t)

+ Ωθ1(s, t) + Ω2θ2(s, t) + · · ·, Λ(s, t) = Ω2Λ2(s, t) + · · ·,

(4.3)

N (s, t) = ΩN1(s, t) + Ω2N2(s, t) + · · ·. (4.4)

Note that the magnetic torque defined in § 2.2 then becomes

MnS(θ, t) = MnΩθ1(∂S/∂θ )(θ0(t), t; b0) + O(Ω2) = −Ωσ 2θ1 + O(Ω2), (4.5)

where in order to simplify algebra in what follows we have defined a dimensionless

local wavenumber, σ (t; b0) ≡
√

Mn(1 + b2
0 sin2 t). Substitution of this solution form

into the equations of motion (2.15) and the expression for the normal stress resultant
(2.10) yields at each order an uncoupled pair of differential equations.

At O(Ω) we seek solutions to

∂θ0

∂t
=

∂2N1

∂s2
, (4.6)

subject to a vanishing of normal stress N1 = 0 at the free ends (s = ±1) while the
continuity relations (4.1), (4.2) require that both N1 and ∂N1/∂s vary continuously
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over the defect s = s∗. The equation may be simply integrated up to obtain

N1(s, t) =
b0 cos t

2
(
1 + b2

0 sin2 t
) (s2 − 1). (4.7)

Now using the relation between θ1 and N1

−∂2θ1

∂s2
+ σ 2θ1 ≡ N1 (4.8)

together with the torque-free boundary condition at the free end ∂θ1/∂s = 0 at s = ±1
and at the defect s = s∗, we arrive at expressions

θ+
1 (s, t) =

Mnb0 cos t

σ 4

[
1

2
(s2 − 1) +

1

σ 2
+

s∗ cosh(σ (s − 1)) − cosh(σ (s − s∗))

σ sinh(σ (1 − s∗))

]
, (4.9a)

θ−
1 (s, t) =

Mnb0 cos t

σ 4

[
1

2
(s2 − 1) +

1

σ 2
− s∗ cosh(σ (1 + s)) + cosh(σ (s − s∗))

σ sinh(σ (1 + s∗))

]
, (4.9b)

valid in the respective domains s > s∗ and s < s∗. The filament flexes and opens at
the defect by an angle

�θ1(t) ≡ ΩMnb0 cos t

σ 5
[s∗ coth(σ (1 − s∗)) + s∗ coth(σ (1 + s∗))

− cosech(σ (1 − s∗)) + cosech(σ (1 + s∗))]. (4.10)

At O(Ω2) the continuity relations (4.1), (4.2) yield

[N2]
+
− =

[
∂N2

∂s

]+

−
= 0, [Λ2]

+
− = N1 [θ1]

+
− ,

[
∂Λ

∂s

]
=

1

α

∂N1

∂s
[θ1]

+
− , (4.11)

where we have used [ ]+− as a shorthand for denoting the discontinuity in a variable
across s = s∗. We can therefore solve separately for Λ2 and N2. We simplify the
algebra by solving for the time-integrated normal stress, N2 ≡

∫ t
N2 dt , which satisfies

equations

∂2N±
2

∂s2
= θ

±
1 with N±

2 |s=±1 = 0, [N2]
+
− =

[
∂N2

∂s

]+

−
= 0, (4.12)

from whence we obtain expressions

N+
2 =

Mnb0 cos t

σ 4

[
1

24
(s4 − 6s2 + 5) + +

s2 − 1

2σ 2
+ C(s − 1)

+
s∗ cosh(σ (s − 1)) − s∗ − cosh(σ (s − s∗)) + cosh(σ (1 − s∗))

σ 3 sinh(σ (1 − s∗))

]
, (4.13)

N−
2 =

Mnb0 cos t

σ 4

[
1

24
(s4 − 6s2 + 5) + +

s2 − 1

2σ 2
+ C(s + 1)

−s∗ cosh(σ (s + 1)) − s∗ + cosh(σ (s − s∗)) + cosh(σ (1 + s∗))

σ 3 sinh(σ (1 + s∗))

]
, (4.14)

where the coefficient C is chosen to satisfy the continuity relations

C =
s∗ sinh σ − sinh(σs∗)

σ 3(cosh(σs∗) + cosh σ )
. (4.15)
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At the same time, it is necessary to solve for the second-order tension contribution
from the inextensibility equation

α
∂2Λ

±
2

∂s2
= (α + 1)

∂θ
±
1

∂s

∂N1

∂s
+ α

∂2θ
±
1

∂s2
N1. (4.16)

A closed-form expression for the tension is long and we do not reproduce it here.
The time-integrated swimming speed of the filament is given correct to leading

order in Ω by the expression

〈vx〉 =
Ω

2π

∫ 2π

0

((
∂Λ2

∂s
− θ1

∂N1

∂s

)
cos θ0 − N2 sin θ0

)∣∣∣∣
s=s∗

dt (4.17a)

=
Ω

2π

∫ 2π

0

((
∂Λ2

∂s
− θ1

∂N1

∂s

)
1

(1 + b2
0 sin2 t)1/2

+ N2

b0 cos t

(1 + b2
0 sin2 t)3/2

)∣∣∣∣
s=s∗

dt,

(4.17b)

where we have recast the integral in terms of the time-integrated normal stress N2 by
integrating by parts. The expression for the swimming speed includes contributions
from tension and a time-non-reversible normal force. That the velocity is O(Ω) at
sufficiently small Ω could have been anticipated from a simple symmetry argument:
setting Ω → −Ω is equivalent to reversing the direction of the y-coordinate axis and
reversing the direction of time, so that we then expect 〈vx〉 → −〈vx〉, and that velocity
must be at least O(Ω) in this parameter range. The dimensional velocity will therefore
be proportional to the square of the dimensional frequency. In general the integral
in (4.17b) must be evaluated numerically; however, much of the phenomenology of
swimming can be understood by the consideration of two distinguished limits.

4.2.1. Mn → 0

As the magnetoelastic number Mn → 0, corresponding to a short stiff filament or
to a weak magnetic field, the leading-order swimming speed of the filament is

〈vx〉 ∼ Ω(α − 1)

24Mnπ
s∗(1 − s∗2)

∫ 2π

0

b2
0 cos2 t dt(

1 + b2
0 sin2 t

)7/2
+ O(1), (4.18)

which clearly displays the influence of the defect location. There is no translation if
the defect is coincident with the midpoint, in which case fore–aft symmetry remains
unbroken, or with either of the free ends of the filament, since then the ruddering
mechanism described above cannot be employed. The maximum swimming speed is
attained when s∗ = ± 1/

√
3 for rightward/leftward swimming.

Note that we seem to show here that the swimming speed of the filament becomes
singular as we let Mn → 0; in fact the low-frequency limit requires us to invoke the
additional regularity assumption that Ω � Mn. As Mn → 0 the domain of validity
of our asymptotic expressions becomes vanishingly small; however, holding Ω/Mn

constant so as to maintain the compatibility of expansions, we conclude that the
distance travelled by the filament per stroke remains finite in the limit of arbitrarily
weak fields.
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4.2.2. Mn → ∞
For large Mn, i.e. a long flexible filament or strong magnetic field, it can be shown

with some lengthy algebra that the time-averaged velocity decays with Mn like

〈vx〉 =
Ω(α − 1)s∗

2πM
5/2
n

∫ 2π

0

b2
0 cos2 t dt(

1 + b2
0 sin2 t

)5
+ O

(
exp

[
−M1/2

n (1 − |s∗|)
])

. (4.19)

In this strong field limit, the filament swims fastest if the defect is located near one
of the free ends, though not within bending zones of length O(M−1/2

n ) at each end.
Reducing the length of the ‘rudder’ improves its function, right down to a length at
which it is no longer able to flex to accommodate the force difference between its two
ends. One interpretation for this is that – just as in the picture of the stroke kinematics
introduced above – the rudder is essentially passive, and reducing its length reduces
the passive drag that resists the driving arm. Only when the length scale of the rudder
becomes comparable with the thickness of the bending zone is information about the
free end s = 1 communicated to the driving arm, so that the stroke becomes fore–aft
symmetric, leading to a fall-off in swimming speed.

In both limits of Mn, we observe that if the perpendicular and parallel drag
coefficients are identical (i.e. α =1) there is no net translation, illustrating the general
result that drag-based swimming is impossible under conditions of isotropic drag
(Becker et al. 2003). In both regimes the swimming speed decreases with Mn, which
is also seen at moderate frequencies in our numerical results (figure 10); somewhat
remarkably, depending on the location of the defect, stiff filaments can be more
effective swimmers at low frequencies. For the filament shown in figure 8 Mn = 16.3
and we estimate (using the directly measured value of αζ = 1.3 × 10−2 Pa s−1) that
Ω = 100. Putting these parameters into the simulations (and putting an idealized defect
at s∗ =0.33) gives 〈vx〉 ≈ 0.4 µms−1, which is slightly smaller than the experimental
value but certainly of the right order of magnitude.

4.3. Strong transverse fields and hairpin stabilization

Becker et al. (2003) find that Purcell’s three-link swimmer is biphasic: with the same
stroke pattern the direction that the swimmer takes is reversed as the stroke amplitude
is increased above a threshold that depends on the dimensions of the swimmer. This
feature can be identified with the existence of a second mode of swimming for the
swimmer, in which with two links together function as the rudder, with only one
extremal link driving the system. It is natural to ask whether the same might be true
of these paramagnetic swimmers. We have been able to find no evidence for this within
experimentally realizable ranges of b0, Mn and Ω . It is possible for sufficiently small
values of Mn and Ω and large b0 and appropriately contrived initial configurations to
obtain large discontinuities in angle θ(s∗

+)−θ(s∗
−), but if this discontinuity exceeds π/2

(an approximate criterion for accessing the second swimming mode for the three-link
swimmer) it suffers a ‘snap-through’ instability, where |θ(s∗

+) − θ(s∗
−)| → π. Neither

our hydrodynamic model, nor our expression for the torque can be applied to the
doubled-back swimmer, nor is there any evidence of ‘snap-through’ in experiments.
However, it is interesting to observe the effect of such transitions on the stability and
range of static shapes available in experiment.

In static hairpins the magnetic torque is completely balanced by bending stiffness
(Goubault et al. 2003), and no force acts normal to the filament. For this reason, a
zero-bending-stiffness defect such as that under study is lethal if it occurs in the arch
of a potential hairpin, since it permits the hairpin to fold completely shut without
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any tensile or bending penalty. However, numerical simulations show that it is benign
if included in one of the arms of the filament.

4.4. More general classes of defects

Our defect model is by design simple, and unlikely to correspond in detail to any of the
range of defects encountered in experiment. However, it serves as a powerful proof of
the principle that localized defects can account for at least part of the phenomenology
of swimming in otherwise homogeneous filaments. Even without admitting the full
richness of continuous variation in bending stiffness along the spine of the filament,
one can conceive many other simple extensions to the theory, representing plausible
forms of defect: a site of high bending stiffness (corresponding to increased polymer
density), or localized natural curvature (a kink in the filament, as might occur if one
of the beads slips out of alignment during the assembly phase).

5. Conclusions
We have applied slender-body theory to study the magnetically driven changes in

conformation of a long filament consisting of linked paramagnetic particles. With this
model, we have analysed the stability of a class of the static shapes available to the
filament, with focus on the lifetime of a simple hairpin (Goubault et al. 2003). We
have argued that such stability thresholds will provide the most accurate criteria for
the observation of folded filaments in experiments.

We have also investigated the dynamical evolution of filaments under crossed
steady and temporally varying magnetic fields with directed swimming triggered
by the inclusion of elastic defects in the filament. The stroke was kinematically
decomposed and numerical results for the swimming speed as a function of defect
location and of the frequency and magnetoelastic number were computed. It would
be interesting to extend this study to filaments with multiple defects. Comparison to
experiment may become possible if a scheme for reproducibly manufacturing defects
is devised.

While our model captures some of the rich dynamics of experiments, and
provides robust scaling laws for the swimming speed as a function of frequency
and magnetoelastic number, quantitative comparison with the experimental data will
require further insight into the physics of the thin fluid layer separating the filament
from the floor of the capillary tube.

The unprecedented control that Dreyfus et al. (2005) were able to exert over
properties such as the length of the filament, time variation in the external field and
rheology of the surrounding fluid makes this a very good system for testing our
best understanding of swimming at low Reynolds number. Moreover, a quantitatively
accurate theory for the swimming speed of such filaments might have practical utility.
The swimming speed of the filament is controlled by its bending stiffness and this
in turn is set by the number and quality of polymer links between the paramagnetic
particles (Goubault et al. 2003). If the inverse function for obtaining the bending
stiffness from the swimming speed can be found, then we are presented with the
prospect of extracting information about the strength and affinity of the chemical
contacts between polymer and particle coating from mesoscopic measurements of
swimming speed without any direct manipulation of the particles in the filament.

The authors thank C. Goubault and P. Jop for inspiring this study, and for their
help with materials preparation. M.R. and H.A.S. thank the Harvard NSEC and the
benefactor of the Kao Fellowship for financial support.
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